UNIFAC-Dortmund

Dortmund modified UNIFAC model

Model description

This is the Dortmund modified UNIFAC model. In this model, the parameters are defined as:

The temperature function is defined with a quadratic temperature function as follows:

Subgroups list

The list of the functional groups and its interaction parameters could be accessed on the DDBST web page: https://www.ddbst.com/PublishedParametersUNIFACDO.html

We reproduce here the list of functional groups. To instantiate a UNIFAC-Dortmund model you must define which functional groups are used in a molecule by the Subgroup Number column.

Subgroup number Subgroup Name Main Group No. Main Group Name R Q
1 CH3 1 CH2 0.6325 1.0608
2 CH2 1 CH2 0.6325 0.7081
3 CH 1 CH2 0.6325 0.3554
4 C 1 CH2 0.6325 0
5 CH2=CH 2 C=C 1.2832 1.6016
6 CH=CH 2 C=C 1.2832 1.2489
7 CH2=C 2 C=C 1.2832 1.2489
8 CH=C 2 C=C 1.2832 0.8962
9 ACH 3 ACH 0.3763 0.4321
10 AC 3 ACH 0.3763 0.2113
11 ACCH3 4 ACCH2 0.91 0.949
12 ACCH2 4 ACCH2 0.91 0.7962
13 ACCH 4 ACCH2 0.91 0.3769
14 OH (P) 5 OH 1.2302 0.8927
15 CH3OH 6 CH3OH 0.8585 0.9938
16 H2O 7 H2O 1.7334 2.4561
17 ACOH 8 ACOH 1.08 0.975
18 CH3CO 9 CH2CO 1.7048 1.67
19 CH2CO 9 CH2CO 1.7048 1.5542
20 CHO 10 CHO 0.7173 0.771
21 CH3COO 11 CCOO 1.27 1.6286
22 CH2COO 11 CCOO 1.27 1.4228
23 HCOO 12 HCOO 1.9 1.8
24 CH3O 13 CH2O 1.1434 1.6022
25 CH2O 13 CH2O 1.1434 1.2495
26 CHO 13 CH2O 1.1434 0.8968
27 THF 43 CY-CH2O 1.7023 1.8784
28 CH3NH2 14 CH2NH2 1.6607 1.6904
29 CH2NH2 14 CH2NH2 1.6607 1.3377
30 CHNH2 14 CH2NH2 1.6607 0.985
31 CH3NH 15 CH2NH 1.368 1.4332
32 CH2NH 15 CH2NH 1.368 1.0805
33 CHNH 15 CH2NH 1.368 0.7278
34 CH3N 16 (C)3N 1.0746 1.176
35 CH2N 16 (C)3N 1.0746 0.824
36 ACNH2 17 ACNH2 1.1849 0.8067
37 AC2H2N 18 PYRIDINE 1.4578 0.9022
38 AC2HN 18 PYRIDINE 1.2393 0.633
39 AC2N 18 PYRIDINE 1.0731 0.353
40 CH3CN 19 CH2CN 1.5575 1.5193
41 CH2CN 19 CH2CN 1.5575 1.1666
42 COOH 20 COOH 0.8 0.9215
43 HCOOH 44 HCOOH 0.8 1.2742
44 CH2CL 21 CCL 0.9919 1.3654
45 CHCL 21 CCL 0.9919 1.0127
46 CCL 21 CCL 0.9919 0.66
47 CH2CL2 22 CCL2 1.8 2.5
48 CHCL2 22 CCL2 1.8 2.1473
49 CCL2 22 CCL2 1.8 1.7946
50 CHCL3 45 CHCL3 2.45 2.8912
51 CCL3 23 CCL3 2.65 2.3778
52 CCL4 24 CCL4 2.618 3.1836
53 ACCL 25 ACCL 0.5365 0.3177
54 CH3NO2 26 CNO2 2.644 2.5
55 CH2NO2 26 CNO2 2.5 2.304
56 CHNO2 26 CNO2 2.887 2.241
57 ACNO2 27 ACNO2 0.4656 0.3589
58 CS2 28 CS2 1.24 1.068
59 CH3SH 29 CH3SH 1.289 1.762
60 CH2SH 29 CH3SH 1.535 1.316
61 FURFURAL 30 FURFURAL 1.299 1.289
62 DOH 31 DOH 2.088 2.4
63 I 32 I 1.076 0.9169
64 BR 33 BR 1.209 1.4
65 CH=-C 34 C=-C 0.9214 1.3
66 C=-C 34 C=-C 1.303 1.132
67 DMSO 35 DMSO 3.6 2.692
68 ACRY 36 ACRY 1 0.92
69 CL-(C=C) 37 CLCC 0.5229 0.7391
70 C=C 2 C=C 1.2832 0.4582
71 ACF 38 ACF 0.8814 0.7269
72 DMF 39 DMF 2 2.093
73 HCON(.. 39 DMF 2.381 1.522
74 CF3 40 CF2 1.284 1.266
75 CF2 40 CF2 1.284 1.098
76 CF 40 CF2 0.8215 0.5135
77 COO 41 COO 1.6 0.9
78 CY-CH2 42 CY-CH2 0.7136 0.8635
79 CY-CH 42 CY-CH2 0.3479 0.1071
80 CY-C 42 CY-CH2 0.347 0
81 OH (S) 5 OH 1.063 0.8663
82 OH (T) 5 OH 0.6895 0.8345
83 CY-CH2O 43 CY-CH2O 1.4046 1.4
84 TRIOXAN 43 CY-CH2O 1.0413 1.0116
85 CNH2 14 CH2NH2 1.6607 0.985
86 NMP 46 CY-CONC 3.981 3.2
87 NEP 46 CY-CONC 3.7543 2.892
88 NIPP 46 CY-CONC 3.5268 2.58
89 NTBP 46 CY-CONC 3.2994 2.352
91 CONH2 47 CONR 1.4515 1.248
92 CONHCH3 47 CONR 1.5 1.08
93 HCONHCH3 49 HCONR 2.4617 2.192
94 HCONHCH2 49 HCONR 2.4617 1.842
100 CONHCH2 47 CONR 1.5 1.08
101 AM(CH3)2 48 CONR2 2.4748 1.9643
102 AMCH3CH2 48 CONR2 2.2739 1.5754
103 AM(CH2)2 48 CONR2 2.0767 1.1866
104 AC2H2S 52 ACS 1.7943 1.34
105 AC2HS 52 ACS 1.6282 1.06
106 AC2S 52 ACS 1.4621 0.78
107 H2COCH 53 EPOXIDES 1.3601 1.8031
108 COCH 53 EPOXIDES 0.683 0.3418
109 HCOCH 53 EPOXIDES 0.9104 0.6538
110 (CH2)2SU 56 SULFONE 2.687 2.12
111 CH2SUCH 56 SULFONE 2.46 1.808
112 (CH3)2CB 55 CARBONAT 2.42 2.4976
113 (CH2)2CB 55 CARBONAT 2.42 2.0018
114 CH2CH3CB 55 CARBONAT 2.42 2.2497
119 H2COCH2 53 EPOXIDES 1.063 1.123
122 CH3S 61 CH2S 1.613 1.368
123 CH2S 61 CH2S 1.3863 1.06
124 CHS 61 CH2S 1.1589 0.748
153 H2COC 53 EPOXIDES 0.9104 0.6538
178 C3H2N2+ 84 IMIDAZOL 1.3662 0.6797
179 BTI- 85 BTI 5.621 5.9463
184 C3H3N2+ 84 IMIDAZOL 1.843 1.6997
189 C4H8N+ 87 PYRROL 2.7867 2.7723
195 BF4- 89 BF4 3.9628 0.6214
196 C5H5N+ 90 PYRIDIN 2.1094 2.5106
197 OTF- 91 OTF 3.371 2.0001
201 -S-S- 93 -S-S- 1.0678 2.244
209 SO4 98 SO4 0.9903 3.5249
210 HSO4 98 SO4 1.5654 3.8076
211 PF6 99 PF6 3.8183 3.6018
220 C5H4N+ 90 PYRIDIN 2.4873 2.4457

Using ugropy to retrieve UNIFAC-Dortmund subgroups

There is the possibility of using another library of our group ugropy to retrieve the UNIFAC-Dortmund subgroups and not suffer the pain of typing the subgroup numbers and parameters by hand. The next Python snippet shows how you can use it.

from ugropy import dortmund, writers


names = ["water", "toluene", "cyclohexane"]
groups = [dortmund.get_groups(n).subgroups for n in names]

fortran_code = writers.to_yaeos(groups, dortmund)

print(fortran_code)

And you will obtain:

use yaeos__models_ge_group_contribution_unifac, only: Groups

type(Groups) :: molecules(3)

molecules(1)%groups_ids = [16]
molecules(1)%number_of_groups = [1]

molecules(2)%groups_ids = [9, 11]
molecules(2)%number_of_groups = [5, 1]

molecules(3)%groups_ids = [78]
molecules(3)%number_of_groups = [6]

Examples

Here is an example of a fully instantiated UNIFAC-Dortmund model. Please check the Gibbs Excess Models section in the user documentation to learn all the things you can do with this model.

Notice that here we are using the setup_dortmund function to instantiate the model.

Calculating activity coefficients

We can instantiate a UNIFAC model with a mixture ethanol-water and evaluate the logarithm of activity coefficients of the model for a 0.5 mole fraction of each, and a temperature of 298.0 K.

use yaeos__constants, only: pr
use yaeos__models_ge_group_contribution_unifac, only: Groups, UNIFAC, setup_dortmund

! Variables declarations
type(UNIFAC) :: model
type(Groups) :: molecules(2)
real(pr) :: ln_gammas(2)

! Variables instances
! Ethanol definition [CH3, CH2, OH]
molecules(1)%groups_ids = [1, 2, 14] ! Subgroups ids
molecules(1)%number_of_groups = [1, 1, 1] ! Subgroups occurrences

! Water definition [H2O]
molecules(2)%groups_ids = [16]
molecules(2)%number_of_groups = [1]

! Model setup
model = setup_dortmund(molecules)

! Calculate ln_gammas
call model%ln_activity_coefficient([0.5_pr, 0.5_pr], 298.0_pr, ln_gammas)

print *, ln_gammas

References

  1. Weidlich, U., & Gmehling, J. (1987). A modified UNIFAC model. 1. Prediction of VLE, hE, and .gamma..infin. Industrial & Engineering Chemistry Research, 26(7), 1372-1381. https://doi.org/10.1021/ie00067a018
  2. Gmehling, J., Li, J., & Schiller, M. (1993). A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Industrial & Engineering Chemistry Research, 32(1), 178-193. https://doi.org/10.1021/ie00013a024
  3. Gmehling, J., Lohmann, J., Jakob, A., Li, J., & Joh, R. (1998). A Modified UNIFAC (Dortmund) Model. 3. Revision and Extension. Industrial & Engineering Chemistry Research, 37(12), 4876-4882. https://doi.org/10.1021/ie980347z
  4. Lohmann, J., & Gmehling, J. (2001). Modified UNIFAC (Dortmund). Reliable Model for the Development of Thermal Separation Processes. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 34(1), 43-54. https://doi.org/10.1252/jcej.34.43
  5. Lohmann, J., Joh, R., & Gmehling, J. (2001). From UNIFAC to Modified UNIFAC (Dortmund). Industrial & Engineering Chemistry Research, 40(3), 957-964. https://doi.org/10.1021/ie0005710
  6. Wittig, R., Lohmann, J., Joh, R., Horstmann, S., & Gmehling, J. (2001). Vapor−Liquid Equilibria and Enthalpies of Mixing in a Temperature Range from 298.15 to 413.15 K for the Further Development of Modified UNIFAC (Dortmund). Industrial & Engineering Chemistry Research, 40(24), 5831-5838. https://doi.org/10.1021/ie010444j
  7. Gmehling, J., Wittig, R., Lohmann, J., & Joh, R. (2002). A Modified UNIFAC (Dortmund) Model. 4. Revision and Extension. Industrial & Engineering Chemistry Research, 41(6), 1678-1688. https://doi.org/10.1021/ie0108043
  8. Wittig, R., Lohmann, J., & Gmehling, J. (2003). Prediction of phase equilibria and excess properties for systems with sulfones. AIChE Journal, 49(2), 530-537. https://doi.org/10.1002/aic.690490223
  9. Jakob, A., Grensemann, H., Lohmann, J., & Gmehling, J. (2006). Further Development of Modified UNIFAC (Dortmund): Revision and Extension 5. Industrial & Engineering Chemistry Research, 45(23), 7924-7933. https://doi.org/10.1021/ie060355c
  10. Hector, T., & Gmehling, J. (2014). Present status of the modified UNIFAC model for the prediction of phase equilibria and excess enthalpies for systems with ionic liquids. Fluid Phase Equilibria, 371, 82-92. https://doi.org/10.1016/j.fluid.2014.03.006
  11. Constantinescu, D., & Gmehling, J. (2016). Further Development of Modified UNIFAC (Dortmund): Revision and Extension 6. Journal of Chemical & Engineering Data, 61(8), 2738-2748. https://doi.org/10.1021/acs.jced.6b00136