UNIQUAC

UNIQUAC

UNIQUAC (universal quasichemical) Excess Gibbs free energy model.

With:

Some of the model’s terms can be simplified to reduce the complexity of the derivatives. Also, allows the model to be evaluated in mole vector n where some of the composition are equal to zero.

Being the total number of moles in the system. The expression for the Excess Gibbs free energy can be rewritten as:

Temperature derivatives

:

Cross temperature-compositional derivative

Compositional derivatives

:

derivatives are not really needed, but we also provide them.

:

:

Differentiating each term of the first compositional derivative respect to we get:

Examples

Example from: Gmehling et al. (2012) [2]

An example of having a mixture of Water-Ethanol-Bezene at 298.15 K with constant [K]:

Water Ethanol Benzene
0 526.02 309.64
−318.06 0 −91.532
1325.1 302.57 0
use yaeos, only: pr, setup_uniquac, UNIQUAC

integer, parameter :: nc = 3

real(pr) :: rs(nc), qs(nc)
real(pr) :: b(nc, nc)
real(pr) :: n(nc)

real(pr) :: ln_gammas(nc), T

type(UNIQUAC) :: model

rs = [0.92_pr, 2.1055_pr, 3.1878_pr]
qs = [1.4_pr, 1.972_pr, 2.4_pr]

T = 298.15_pr

! Calculate bij from DUij. We need -DU/R to get bij
b(1,:) = [0.0_pr, -526.02_pr, -309.64_pr]
b(2,:) = [318.06_pr, 0.0_pr, 91.532_pr]
b(3,:) = [-1325.1_pr, -302.57_pr, 0.0_pr]

model = setup_uniquac(qs, rs, bij=b)

n = [2.0_pr, 2.0_pr, 8.0_pr]

call model%ln_activity_coefficient(n, T, ln_gammas)

print *, exp(ln_gammas) ! [8.856, 0.860, 1.425]

References

  1. Maurer, G., & Prausnitz, J. M. (1978). On the derivation and extension of the UNIQUAC equation. Fluid Phase Equilibria, 2(2), 91-99.
  2. Gmehling, Jurgen, Barbel Kolbe, Michael Kleiber, and Jurgen Rarey. Chemical Thermodynamics for Process Simulation. 1st edition. Weinheim: Wiley-VCH, 2012.
  3. Caleb Bell and Contributors (2016-2024). Thermo: Chemical properties component of Chemical Engineering Design Library (ChEDL) https://github.com/CalebBell/thermo.