Calculate natural logarithm of fugacity given pressure and temperature.
Calculate the natural logarithm of the fugacity coefficient and its derivatives given pressure and temperature. This routine will obtain the desired volume root at the specified pressure and calculate fugacity at that point.The routine gives the possibility to calculate the pressure derivatives and volume.
eos = PengRobinson76(Tc, Pc, w)
n = [1.0_pr, 1.0_pr]
T = 300.0_pr
V = 1.0_pr
call eos%lnphi_pt(&
n, V, T, lnPhi=lnPhi, &
dlnPhidP=dlnPhidP, dlnPhidT=dlnPhidT, dlnPhidn=dlnPhidn &
)
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(ArModel), | intent(in) | :: | eos |
Model |
||
real(kind=pr), | intent(in) | :: | n(:) |
Mixture mole numbers |
||
real(kind=pr), | intent(in) | :: | P |
Pressure [bar] |
||
real(kind=pr), | intent(in) | :: | T |
Temperature [K] |
||
real(kind=pr), | intent(out), | optional | :: | V |
Volume [L] |
|
character(len=*), | intent(in) | :: | root_type |
Type of root desired [“liquid”, “vapor”, “stable”] |
||
real(kind=pr), | intent(out), | optional | :: | lnPhi(size(n)) |
vector |
|
real(kind=pr), | intent(out), | optional | :: | dlnPhidP(size(n)) |
ln(phi) Presssure derivative |
|
real(kind=pr), | intent(out), | optional | :: | dlnPhidT(size(n)) |
ln(phi) Temperature derivative |
|
real(kind=pr), | intent(out), | optional | :: | dlnPhidn(size(n),size(n)) |
ln(phi) compositional derivative |
|
real(kind=pr), | intent(out), | optional | :: | dPdV |
|
|
real(kind=pr), | intent(out), | optional | :: | dPdT |
|
|
real(kind=pr), | intent(out), | optional | :: | dPdn(size(n)) |
|
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
real(kind=pr), | private | :: | P_in | ||||
real(kind=pr), | private | :: | V_in |