DmixMHV Subroutine

public subroutine DmixMHV(self, n, T, ai, daidt, daidt2, D, dDdT, dDdT2, dDi, dDidT, dDij)

Michelsen Modified Huron-Vidal mixing rule.

Mixing rule at infinite pressure as defined in the book of Michelsen and Møllerup.

Description

At the infinite pressure limit of a cubic equation of state it is possible to relate teh mixing rule for the attractive term with a excess Gibbs energy model like NRTL with the expression:

Examples

 type(CubicEoS)

References

Autodiff injection until we can decipher this derivative

Type Bound

MHV

Arguments

Type IntentOptional Attributes Name
class(MHV), intent(in) :: self
real(kind=pr), intent(in) :: n(:)
real(kind=pr), intent(in) :: T
real(kind=pr), intent(in) :: ai(:)
real(kind=pr), intent(in) :: daidt(:)
real(kind=pr), intent(in) :: daidt2(:)
real(kind=pr), intent(out) :: D
real(kind=pr), intent(out) :: dDdT
real(kind=pr), intent(out) :: dDdT2
real(kind=pr), intent(out) :: dDi(:)
real(kind=pr), intent(out) :: dDidT(:)
real(kind=pr), intent(out) :: dDij(:,:)

Variables

Type Visibility Attributes Name Initial
real(kind=pr), private :: Ge
real(kind=pr), private :: GeT
real(kind=pr), private :: GeT2
real(kind=pr), private :: GeTn(size(n))
real(kind=pr), private :: Gen(size(n))
real(kind=pr), private :: Gen2(size(n),size(n))
real(kind=pr), private :: b
real(kind=pr), private :: bi(size(n))
real(kind=pr), private :: d2logBi_nbi(size(n),size(n))
real(kind=pr), private :: dbi(size(n))
real(kind=pr), private :: dbij(size(n),size(n))
real(kind=pr), private :: dlogBi_nbi(size(n))
real(kind=pr), private :: dot_n_logB_nbi
real(kind=pr), private :: f
real(kind=pr), private :: fdi(size(n))
real(kind=pr), private :: fdij(size(n),size(n))
real(kind=pr), private :: fdit(size(n))
real(kind=pr), private :: fdt
real(kind=pr), private :: fdt2
integer, private :: i
integer, private :: j
integer, private :: l
real(kind=pr), private :: logB_nbi(size(n))

integer, private :: nc
real(kind=pr), private :: q
real(kind=pr), private :: totn

Total number of moles