huron_vidal.f90 Source File


Source Code

module yaeos__models_cubic_mixing_rules_huron_vidal
   !! # Huron-Vidal (like) mixing rules module
   !! This module contains the mixing rules that are based/similar to the
   !! mixing rules defined by Huron-Vidal
   !!
   !! # Description
   !! Huron-Vidal presented a way to link a \(G^E\) model with a Cubic EoS
   !! mixing rule. This makes it possible to make good predictions on
   !! polar compounds containing mixtures.
   !!
   !! # Examples
   !!
   !! ```fortran
   !!  A basic code example
   !! ```
   !!
   !! # References
   !!
   use yaeos__constants, only: pr, R
   use yaeos__models_ar_genericcubic, only: CubicMixRule
   use yaeos__models_ar_cubic_mixing_base, only: bmix_qmr
   use yaeos__models_ge, only: GeModel
   implicit none

   private

   public :: HV
   public :: MHV
   public :: DmixMHV

   type, extends(CubicMixRule) :: HV
      class(GeModel), allocatable :: ge
      real(pr), allocatable :: del1(:)
      real(pr), allocatable :: bi(:)
   contains
      procedure :: Bmix => BmixHV
      procedure :: D1Mix => D1MixHV
      procedure :: Dmix => DmixHV
   end type HV

   type, extends(CubicMixRule) :: MHV
      !! # Michelsen's modified Huron-Vidal mixing rule
      !! Mixing rule at zero-pressure which allows for the inclusion of an
      !! excess-gibbs model.
      !!
      !! # Description
      !! This mixing rule is based on the aproximate zero-pressure limit
      !!  of a cubic equation of state. At the aproximate zero-pressure limit the
      !! attractive parameter can be expressed as:
      !!
      !! \[
      !! \frac{D}{RTB}(n, T) = \sum_i n_i \frac{a_i(T)}{b_i} + \frac{1}{q}
      !!  \left(\frac{G^E(n, T)}{RT} + \sum_i n_i \ln \frac{B}{nb_i} \right)
      !! \]
      !! Where \(q\) is a weak function of temperature. In the case of `MHV`
      !! and simplicity it is considered that depends on the model used.
      !!
      !! # Examples
      !! To use the modified Huron-Vidal mixing rule it is necessary to define
      !! a `CubicEoS` and replace its original mixing rule with the one generated
      !! by the user.
      !! ```fortran
      !! type(MHV) :: mixrule
      !! type(NRTL) :: ge_model
      !! type(CubicEoS) :: model
      !!
      !! ! Define the Ge model to be used and the CubicEoS
      !! ge_model = NRTL(a, b, c)
      !! model = SoaveRedlichKwong(tc, pc, w)
      !!
      !! ! Use the initialization function to setup
      !! mixrule = MHV(ge=ge_model, q=-0.593_pr, bi=model%b)
      !!
      !! ! Replace the original mixrule on the previously defined model
      !! model%mixrule = mixrule
      !!
      !! ! Ready to do calculations
      !! call pressure(model, n, v, T)
      !! ```
      !!
      !! # References
      !!
      real(pr), allocatable :: l(:, :)
      real(pr), private, allocatable :: bi(:)
      real(pr), private, allocatable :: B, dBi(:), dBij(:, :)
      class(GeModel), allocatable :: ge
      real(pr) :: q
   contains
      procedure :: Bmix => BmixMHV
      procedure :: D1Mix => D1MixMHV
      procedure :: Dmix => DmixMHV
   end type MHV

   interface MHV
      module procedure :: init_mhv
   end interface MHV

contains

   ! ===========================================================================
   ! Huron-Vidal Mixing rule
   ! ---------------------------------------------------------------------------
   subroutine BmixHV(self, n, bi, B, dBi, dBij)
      !! # Repulsive parameter \(B\) mixing rule
      !! Quadratinc mixing rule for the repulsive parameter.
      !!
      !! # Description
      !! \[B = \sum_i n_i b_i\]
      use yaeos__models_ar_cubic_mixing_base, only: bmix_linear
      class(HV), intent(in) :: self
      real(pr), intent(in) :: n(:)
      real(pr), intent(in) :: bi(:)
      real(pr), intent(out) :: B, dBi(:), dBij(:, :)
      call bmix_linear(n, bi, b, dbi, dbij)
   end subroutine BmixHV

   subroutine D1MixHV(self, n, d1i, D1, dD1i, dD1ij)
      use yaeos__models_ar_cubic_mixing_base, only: d1mix_rkpr
      class(HV), intent(in) :: self
      real(pr), intent(in) :: n(:)
      real(pr), intent(in) :: d1i(:)
      real(pr), intent(out) :: D1
      real(pr), intent(out) :: dD1i(:)
      real(pr), intent(out) :: dD1ij(:, :)
      call d1mix_rkpr(n, d1i, D1, dD1i, dD1ij)
   end subroutine D1MixHV

   subroutine DmixHV(self, n, T, &
      ai, daidt, daidt2, &
      D, dDdT, dDdT2, dDi, dDidT, dDij &
      )
      use yaeos__models_ar_cubic_mixing_base, only: lamdba_hv
      class(HV), intent(in) :: self
      real(pr), intent(in) :: T, n(:)
      real(pr), intent(in) :: ai(:), daidt(:), daidt2(:)
      real(pr), intent(out) :: D, dDdT, dDdT2, dDi(:), dDidT(:), dDij(:, :)

      real(pr) :: f, fdt, fdt2, fdi(size(n)), fdit(size(n)), fdij(size(n), size(n))
      real(pr) :: b, bi(size(n)), dbi(size(n)), dbij(size(n), size(n))
      real(pr) :: del1(size(n)), del2(size(n))
      real(pr) :: d1, d1i(size(n)), dd1i(size(n)), dd1ij(size(n), size(n))
      real(pr) :: Ge, GeT, GeT2, Gen(size(n)), GeTn(size(n)), Gen2(size(n), size(n))

      real(pr) :: totn !! Total number of moles

      integer :: i, j, nc
      real(pr) :: L, dL(size(n)), dL2(size(n), size(n))

      nc = size(n)
      totn = sum(n)

      del1 = self%del1
      bi = self%bi

      call self%Bmix(n, bi, B, dBi, dBij)
      call self%D1Mix(n, del1, D1, dD1i, dD1ij)
      call lamdba_hv(D1, dD1i, dD1ij, L, dL, dL2)

      call self%ge%excess_gibbs( &
         n, T, Ge=Ge, GeT=GeT, GeT2=GeT2, Gen=Gen, GeTn=GeTn, Gen2=Gen2 &
         )

      f    = sum(n*ai/bi) - Ge/L
      fdt  = sum(n*daidt/bi) - GeT/L
      fdt2 = sum(n*daidt2/bi) - GeT2/L

      fdi = ai/bi - (Gen/L - dL * Ge/L**2)
      fdiT = daidt/bi - (GeTn/L - dL * GeT/L**2)

      do concurrent(i=1:nc, j=1:nc)
         fdij(i, j) = &
            Ge * dL2(i, j) / L**2 &
            - 2 * Ge * dL(i) * dL(j) / L**3 &
            - Gen2(i, j) / L &
            + Gen(i) * dL(j) / L**2 &
            + Gen(j) * dL(i) / L**2 
            !   Gen2(i, j)/L &
            ! - dL(j) * Gen(i)/L**2 &
            ! - (dL2(i,j) * Gen2(i,j)/L**2 &
            ! + dL(i)*(Gen2(i,j)/L**2-Gen(i)/L * dL(j)/2))
      end do

      dDi = B*fdi + f*dBi
      dDidT = B*fdiT + fdT*dBi

      D = f*B
      dDdT = fdT*B
      dDdT2 = fdT2*B
      dDij = fdij

      do i=1,nc
         do j=1,nc
            dDij(i, j) = dBi(j)*fdi(i) + B*fdij(j, i) + f*dBij(i, j) + fdi(j)*dBi(i)
         end do
      end do

   end subroutine DmixHV

   ! ===========================================================================
   ! Michelsen's Modified Huron-Vidal 1
   ! ---------------------------------------------------------------------------
   type(MHV) function init_mhv(ge, b, q, lij) result(mixrule)
      class(GeModel), intent(in) :: Ge
      real(pr), intent(in) :: b(:)
      real(pr), intent(in) :: q
      real(pr), optional, intent(in) :: lij(:, :)

      integer :: i, nc

      nc = size(b)

      mixrule%q = q
      mixrule%bi = b
      mixrule%Ge = ge
      if (present(lij)) then
         mixrule%l = lij
      else
         mixrule%l = reshape([(0, i=1, nc**2)], [nc, nc])
      end if
   end function init_mhv

   subroutine BmixMHV(self, n, bi, B, dBi, dBij)
      !! # Repulsive parameter \(B\) mixing rule
      !! Quadratinc mixing rule for the repulsive parameter, using
      !! \( b_{ij} = \frac{b_i + b_j}{2} (1 - l_{ij}) \) as a combining rule.
      !!
      !! # Description
      !! Michelsen's modified Huron-Vidal mixing rule assumes a linear mix of
      !! the repulsive parameter.
      !!
      !! \[B = \sum_i n_i b_i\]
      !!
      !! In this implementation the most known crossed combining rule is used:
      !! \[nB = \sum_i \sum_j \frac{b_i + b_j}{2} (1 - l_{ij})\]
      !! to provide versatility to the used model.
      !!
      !! @warning
      !! This mixing rule is intended to use only with a linear combining
      !! rule, using \(l_{ij}\) could negatively affect the thermodynamic
      !! consistency of the model.
      !! @endwarning
      !!
      !! # Examples
      !!
      !! ```fortran
      !!  A basic code example
      !! ```
      !!
      !! # References
      !!
      use yaeos__models_ar_cubic_mixing_base, only: bmix_linear
      class(MHV), intent(in) :: self
      real(pr), intent(in) :: n(:)
      real(pr), intent(in) :: bi(:)
      real(pr), intent(out) :: B, dBi(:), dBij(:, :)
      call bmix_qmr(n, bi, self%l, b, dbi, dbij)
      ! call bmix_linear(n, bi, b, dbi, dbij)
   end subroutine BmixMHV

   subroutine DmixMHV(self, n, T, &
      ai, daidt, daidt2, &
      D, dDdT, dDdT2, dDi, dDidT, dDij &
      )
      !! # Michelsen Modified Huron-Vidal mixing rule.
      !! Mixing rule at infinite pressure as defined in the book of Michelsen and
      !! Møllerup.
      !!
      !! # Description
      !! At the infinite pressure limit of a cubic equation of state it is possible to
      !! relate teh mixing rule for the attractive term with a excess Gibbs energy
      !! model like NRTL with the expression:
      !!
      !! \[
      !! \frac{D}{RTB}(n, T) = \sum_i n_i \frac{a_i(T)}{b_i} + \frac{1}{q}
      !!  \left(\frac{G^E(n, T)}{RT} + \sum_i n_i \ln \frac{B}{nb_i} \right)
      !! \]
      !!
      !! # Examples
      !!
      !! ```fortran
      !!  type(CubicEoS)
      !! ```
      !!
      !! # References
      !!
      class(MHV), intent(in) :: self
      real(pr), intent(in) :: T, n(:)
      real(pr), intent(in) :: ai(:), daidt(:), daidt2(:)
      real(pr), intent(out) :: D, dDdT, dDdT2, dDi(:), dDidT(:), dDij(:, :)
      real(pr) :: f, fdt, fdt2, fdi(size(n)), fdit(size(n)), fdij(size(n), size(n))

      real(pr) :: b, bi(size(n)), dbi(size(n)), dbij(size(n), size(n))
      real(pr) :: Ge, GeT, GeT2, Gen(size(n)), GeTn(size(n)), Gen2(size(n), size(n))

      real(pr) :: totn !! Total number of moles
      real(pr) :: dot_n_logB_nbi
      real(pr) :: logB_nbi(size(n)) !! \(\ln \frac{B}{n b_i}\)
      real(pr) :: dlogBi_nbi(size(n))
      real(pr) :: d2logBi_nbi(size(n), size(n))

      integer :: i, j, l, nc
      real(pr) :: q

      nc = size(n)
      totn = sum(n)

      q = self%q
      bi = self%bi

      call self%ge%excess_gibbs( &
         n, T, Ge=Ge, GeT=GeT, GeT2=GeT2, Gen=Gen, GeTn=GeTn, Gen2=Gen2 &
         )
      call self%Bmix(n, bi, B, dBi, dBij)
      logb_nbi = log(B/(totn*bi))
      dot_n_logB_nbi = dot_product(n, logB_nbi)

      do i = 1, nc
         dlogBi_nbi(i) = logB_nbi(i) + sum(n*dBi(i))/B - 1
      end do

      do i = 1, nc
         do j = 1, nc
            !TODO: Need to figure out this derivative
            d2logBi_nbi(i, j) = dlogBi_nbi(j) &
               + (sum(n*dBij(i, j)) + dBi(i))/B &
               - totn*dBi(i)*dBi(j)/B**2
         end do
      end do

      autodiff: block
         !! Autodiff injection until we can decipher this derivative
         use hyperdual_mod
         type(hyperdual) :: hB
         type(hyperdual) :: hdot_ln_B_nbi
         type(hyperdual) :: hn(nc)

         integer :: ii, jj
         hn = n

         do i = 1, nc
            do j = i, nc
               hn = n
               hn(i)%f1 = 1
               hn(j)%f2 = 1

               hB = 0._pr
               do ii=1,nc
                  do jj=1,nc
                     hB = hB &
                        + (hn(ii)*hn(jj)) &
                        * 0.5_pr * (bi(ii) + bi(jj)) * (1._pr - self%l(ii, jj))
                  end do
               end do
               hB = hB/sum(hn)

               hdot_ln_B_nbi = sum(hn*log(hB/(sum(hn)*bi)))

               d2logBi_nbi(i, j) = hdot_ln_B_nbi%f12
               d2logBi_nbi(j, i) = hdot_ln_B_nbi%f12
            end do
         end do
      end block autodiff

      f = sum(n*ai/bi) + (Ge + R*T*dot_n_logB_nbi)/q
      fdt = sum(n*daidt/bi) + (GeT + R*dot_n_logB_nbi)/q
      fdt2 = sum(n*daidt2/bi) + (GeT2)/q

      fdi = ai/bi + (1._pr/q)*(GeN + R*T*(dlogBi_nbi))
      fdit = daidt/bi + (1._pr/q)*(GeTn + R*(dlogBi_nbi))

      do i = 1, nc
         do j = 1, nc
            fdij(i, j) = R*T*(d2logBi_nbi(i, j))
            fdij(i, j) = 1/q*(fdij(i, j) + GeN2(i, j))
            fdij(i, j) = &
               dBi(j)*fdi(i) + B*fdij(i, j) + fdi(j)*dBi(i) + f*dBij(i, j)
         end do
      end do

      dDi = B*fdi + f*dBi
      dDidT = B*fdiT + fdT*dBi

      D = f*B
      dDdT = fdT*B
      dDdT2 = fdT2*B
      dDij = fdij

   end subroutine DmixMHV

   subroutine D1MixMHV(self, n, d1i, D1, dD1i, dD1ij)
      use yaeos__models_ar_cubic_mixing_base, only: d1mix_rkpr
      class(MHV), intent(in) :: self
      real(pr), intent(in) :: n(:)
      real(pr), intent(in) :: d1i(:)
      real(pr), intent(out) :: D1
      real(pr), intent(out) :: dD1i(:)
      real(pr), intent(out) :: dD1ij(:, :)
      call d1mix_rkpr(n, d1i, D1, dD1i, dD1ij)
   end subroutine D1MixMHV
end module yaeos__models_cubic_mixing_rules_huron_vidal