module yaeos__equilibria_rachford_rice use yaeos__constants, only: pr implicit none contains subroutine betato01(z, K) !! # betato01 !! !! ## Description !! Modify K-factor values to assure that \(\beta\) lies between (0,1) implicit none real(pr), intent(in) :: z(:) !! Molar fractions of the system real(pr) :: K(:) !! K factors \(\frac{y_i}{x_i}\) real(pr) :: g0, g1 ! function g valuated at beta=0 and 1, based on K factors g1 = 1.0 do while (g0 < 0 .or. g1 > 0) if (& any(isnan([g0, g1])) & .or. all(K==0) & .or. maxval(abs(K - 1)) < 0.01_pr) exit g0 = sum(z*K) - 1._pr g1 = 1._pr - sum(z/K) if (g0 < 0) then ! Increased volatiliy will bring the solution from ! subcooled liquid into VLE K = 1.1_pr * K else if (g1 > 0) then ! Decreased volatiliy will bring the solution from ! superheated vapor into VLE K = 0.9_pr * K end if end do end subroutine betato01 subroutine betalimits(z, K, bmin, bmax) !! # betalimits !! !! ## Description !! Define beta limits to avoid overshooting when solving the Rachford-Rice !! equation. !! !! This is based on the assumtion that either \(y_i < 1\) and \(x_i < 1\). real(pr), intent(in) :: z(:) !! Molar fractions vector real(pr), intent(in) :: K(:) !! K-factors real(pr), intent(out) :: bmin !! Minimum beta value real(pr), intent(out) :: bmax !! Maximum beta value real(pr), dimension(size(z)) :: vmin, vmax vmin = 0.d0 ! max=1.001d0 ! modified 3/3/15 (not to generate false separations with beta 0.9999...) vmax = 1.00001_pr ! modified 28/6/15 (to prevent overshooting in the Newton for solving RR eq.) where (K * z > 1) vmin = (K * z - 1._pr) / (K - 1._pr) elsewhere (K < z) vmax = (1 - z)/(1 - K) end where bmin = maxval(vmin) bmax = minval(vmax) end subroutine betalimits subroutine rachford_rice(z, K, beta, rr, drrdb) !! # rachford_rice !! !! ## Description !! Rachford-Rice equation for a two phase system. This equation is used to !! calculate the \(\beta\) value that satisfies the mass balance !! between two phases. !! !! \[ !! rr(\beta) = \sum_i \frac{z_i(K_i - 1)}{1 + \beta(K_i - 1)}] !! \] real(pr), intent(in) :: z(:) !! Mole fractions vector real(pr), intent(in) :: K(:) !! K-factors real(pr), intent(in) :: beta !! \(\beta\) value real(pr), intent(out) :: rr !! Rachford-Rice function value real(pr), intent(out) :: drrdb !! Derivative of the Rachford-Rice function real(pr) :: denom(size(z)) denom = 1 + beta*(K - 1._pr) rr = sum(z*(K - 1._pr)/denom) drrdb = -sum(z*(K - 1._pr)**2/denom**2) end subroutine rachford_rice subroutine solve_rr(z, K, beta, beta_min, beta_max) !! # solve_rr !! !! ## Description !! Solve the Rachford-Rice Equation using the Newton method. real(pr), intent(in) :: z(:) !! Mole fractions vector real(pr), intent(in) :: K(:) !! K-factors real(pr), intent(out) :: beta_min !! Lower limit for \(\beta\) real(pr), intent(out) :: beta_max !! Upper limit for \(\beta\) real(pr), intent(out) :: beta !! \(\beta\) value real(pr) :: g, dgdb real(pr) :: step g = 1.0 step = 1.0 call betalimits(z, k, beta_min, beta_max) do while (abs(g) > 1.d-5 .and. abs(step) > 1.d-10) call rachford_rice(z, k, beta, g, dgdb) step = -g/dgdb beta = beta + step do while ((beta < beta_min .or. beta_max < beta) .and. abs(step) > 1e-10) step = step/2 beta = beta - step end do end do end subroutine solve_rr end module yaeos__equilibria_rachford_rice