module yaeos__equilibria_boundaries_phase_envelopes_px !! Phase boundaries line on the \(P\alpha\) plane calculation procedures. use yaeos__constants, only: pr use yaeos__models, only: ArModel use yaeos__equilibria_equilibrium_state, only: EquilibriumState use yaeos__math_continuation, only: & continuation, continuation_solver, continuation_stopper implicit none type :: CriticalPoint !! Critical point real(pr) :: alpha !! \(\alpha\) real(pr) :: P !! Pressure [bar] end type CriticalPoint type :: PXEnvel2 !! Two-phase PX envelope. !! Phase boundary line of a fluid at constant temperature !! with variation in composition. real(pr), allocatable :: alpha(:) !! Second fluid molar fraction real(pr), allocatable :: z0(:) !! Original fluid composition real(pr), allocatable :: z_inj(:) !! Second fluid composition type(EquilibriumState), allocatable :: points(:) !! Each point through the line. type(CriticalPoint), allocatable :: cps(:) !! Critical points found along the line. end type PXEnvel2 ! Private volumes of each phase to share between functions real(pr), private :: Vz !! Main phase volume [L/mol] real(pr), private :: Vy !! Incipient phase volume [L/mol] contains function px_envelope_2ph(& model, z0, alpha0, z_injection, first_point, & points, iterations, delta_0, specified_variable_0, & solver, stop_conditions & ) result(envelopes) !! PX two-phase envelope calculation procedure. !! !! Phase envelope calculation using the continuation method. !! Defaults to solving the saturation temperature and continues with !! an increment in it. The variable to specify can be changed by modifying !! `specified_variable_0` with the corresponding variable number. ! ======================================================================== use stdlib_optval, only: optval class(ArModel), intent(in) :: model !! Thermodyanmic model real(pr), intent(in) :: z0(:) !! Vector of molar fractions of the global composition (main phase) real(pr), intent(in) :: alpha0 !! First point of \(alpha\) real(pr), intent(in) :: z_injection(:) !! Vector of molar fractions of the injection fluid type(EquilibriumState) :: first_point integer, optional, intent(in) :: points !! Maxmimum number of points, defaults to 500 integer, optional, intent(in) :: iterations !! Point solver maximum iterations, defaults to 100 real(pr), optional, intent(in) :: delta_0 !! Initial extrapolation \(\Delta\) integer, optional, intent(in) :: specified_variable_0 !! Position of specified variable, since the vector of variables is !! \(X = [lnK_i, \dots, lnP, \alpha]\) the values for specification !! will be \([1 \dots nc]\) for the equilibria constants, \(nc+1\) for !! \(lnP\) and \(nc + 2\) for \(\alpha\). procedure(continuation_solver), optional :: solver !! Specify solver for each point, defaults to a full newton procedure procedure(continuation_stopper), optional :: stop_conditions !! Function that returns true if the continuation method should stop type(PXEnvel2) :: envelopes ! ------------------------------------------------------------------------ integer :: nc !! Number of components integer :: ns !! Number of specified variable real(pr) :: dS0 !! Initial specification step real(pr) :: S0 !! Initial specification value real(pr) :: z(size(z0)) !! Composition at some point integer :: max_points !! Maximum number of points integer :: max_iterations !! Maximum number of iterations real(pr) :: X(size(z) + 2), T real(pr), allocatable :: XS(:, :) character(len=14) :: kind ! ======================================================================== ! Handle input ! ------------------------------------------------------------------------ call get_z(alpha0, z0, z_injection, z) kind = first_point%kind nc = size(z) max_points = optval(points, 500) max_iterations = optval(iterations, 100) ns = optval(specified_variable_0, nc+2) dS0 = optval(delta_0, 0.1_pr) ! Correctly define the K-values based on the provided incipient point. select case(first_point%kind) case("bubble", "liquid-liquid") X(:nc) = log(first_point%y/z) case("dew") X(:nc) = log(first_point%x/z) end select T = first_point%T X(nc+1) = log(first_point%P) X(nc+2) = alpha0 S0 = X(ns) ! print *, X, S0 ! call exit allocate(envelopes%points(0), envelopes%cps(0), envelopes%alpha(0)) test_numdiff: block real(pr) :: F(size(X)), df(size(X), size(X)), numdiff(size(X), size(X)) real(pr) :: FdX(size(X)), dx(size(X)), dFdS(size(X)) real(pr) :: FdX2(size(X)) integer :: i integer :: loc(2) real(pr) :: maxerr exit test_numdiff do i=1,size(X) dx = 0 dx(i) = 1.e-5_pr * X(i) call foo(X - dx, ns, S0, FdX, df, dFdS) call foo(X + dx, ns, S0, FdX2, df, dFdS) call foo(X, ns, S0, F, df, dFdS) numdiff(:, i) = (FdX2 - FdX)/(2*dx(i)) end do loc = maxloc(abs(numdiff - df)) maxerr = abs(& (numdiff(loc(1), loc(2)) - df(loc(1), loc(2))& )/numdiff(loc(1), loc(2))) if (maxerr > 0.01_pr) then print *, "ERROR: PXEnvel2 Numerical differentiation failed" loc = maxloc(abs(numdiff - df)) print *, loc print *, df(loc(1), loc(2)), numdiff(loc(1), loc(2)) error stop 1 end if end block test_numdiff ! ======================================================================== ! Trace the line using the continuation method. ! ------------------------------------------------------------------------ XS = continuation(& foo, X, ns0=ns, S0=S0, & dS0=dS0, max_points=max_points, solver_tol=1.e-5_pr, & update_specification=update_spec, & solver=solver, stop=stop_conditions & ) contains recursive subroutine foo(X, ns, S, F, dF, dFdS) !! Function that needs to be solved at each envelope point real(pr), intent(in) :: X(:) integer, intent(in) :: ns real(pr), intent(in) :: S real(pr), intent(out) :: F(:) real(pr), intent(out) :: dF(:, :) real(pr), intent(out) :: dFdS(:) character(len=14) :: kind_z, kind_y real(pr) :: y(nc) real(pr) :: lnphip_z(nc), lnphip_y(nc) real(pr) :: dlnphi_dt_z(nc), dlnphi_dt_y(nc) real(pr) :: dlnphi_dp_z(nc), dlnphi_dp_y(nc) real(pr) :: dlnphi_dn_z(nc, nc), dlnphi_dn_y(nc, nc) real(pr) :: P, K(nc), alpha, dzda(nc) integer :: i, j F = 0 dF = 0 K = exp(X(:nc)) P = exp(X(nc+1)) alpha = X(nc+2) call get_z(alpha, z0, z_injection, z, dzda) y = K*z select case(kind) case ("bubble") kind_z = "liquid" kind_y = "vapor" case ("dew") kind_z = "vapor" kind_y = "liquid" case default kind_z = "stable" kind_y = "stable" end select call model%lnphi_pt(& z, P=P, T=T, V=Vz, root_type=kind_z, & lnphi=lnphip_z, dlnPhidt=dlnphi_dt_z, & dlnPhidp=dlnphi_dp_z, dlnphidn=dlnphi_dn_z & ) call model%lnphi_pt(& y, P=P, T=T, V=Vy, root_type=kind_y, & lnphi=lnphip_y, dlnPhidt=dlnphi_dt_y, & dlnPhidp=dlnphi_dp_y, dlnphidn=dlnphi_dn_y & ) F(:nc) = X(:nc) + lnphip_y - lnphip_z F(nc + 1) = sum(y - z) F(nc + 2) = X(ns) - S ! Jacobian Matrix do i = 1, nc do j = 1, nc df(i, j) = y(j) * dlnphi_dn_y(i, j) end do df(i, i) = df(i, i) + 1 df(i, nc + 2) = sum(K*dlnphi_dn_y(i, :)*dzda - dlnphi_dn_z(i, :)*dzda) end do df(:nc, nc + 1) = P*(dlnphi_dp_y - dlnphi_dp_z) df(nc + 1, :nc) = y df(nc + 1, nc + 2) = sum(dzda*(K - 1)) df(nc + 2, :) = 0 df(nc + 2, ns) = 1 dFdS = 0 dFdS(nc+2) = -1 end subroutine foo subroutine update_spec(X, ns, S, dS, dXdS, step_iters) !! Update the specification during continuation. real(pr), intent(in out) :: X(:) !! Vector of variables \([lnK_i \dots , lnT, lnP]\) integer, intent(in out) :: ns !! Number of specified variable in the vector real(pr), intent(in out) :: S !! Variable specification value real(pr), intent(in out) :: dS !! Step in specification real(pr), intent(in out) :: dXdS(:) !! Variation of variables with respect to specification integer, intent(in) :: step_iters !! Iterations used in the solver real(pr) :: maxdS ! ===================================================================== ! Update specification ! - Dont select T or P near critical points ! - Update dS wrt specification units ! - Set step ! --------------------------------------------------------------------- if (maxval(abs(X(:nc))) < 0.1_pr .and. abs(Vz - Vy) < 0.01) then ns = maxloc(abs(dXdS(:nc)), dim=1) maxdS = 0.01_pr else ns = maxloc(abs(dXdS), dim=1) maxdS = 0.5_pr end if dS = dXdS(ns) * dS dXdS = dXdS/dXdS(ns) dS = sign(1.0_pr, dS) * minval([ & max(sqrt(abs(X(ns))/10._pr), 0.1_pr), & abs(dS)*3/step_iters & ] & ) do while (maxval(abs(dXdS(:nc)*dS)) < 0.05) dS = dS*1.1_pr end do call save_point(X, step_iters) call detect_critical(X, dXdS, ns, S, dS) end subroutine update_spec subroutine save_point(X, iters) !! Save the converged point real(pr), intent(in) :: X(:) integer, intent(in) :: iters type(EquilibriumState) :: point real(pr) :: y(nc), P, alpha P = exp(X(nc+1)) alpha = X(nc+2) y = exp(X(:nc))*z select case(kind) case("bubble") point = EquilibriumState(& kind=kind, x=z, Vx=Vz, y=y, Vy=Vy, & T=T, P=P, beta=0._pr, iters=iters & ) case("dew") point = EquilibriumState(& kind=kind, x=y, Vx=Vy, y=z, Vy=Vz, & T=T, P=P, beta=0._pr, iters=iters & ) case default point = EquilibriumState(& kind="saturation", x=z, Vx=Vz, y=y, Vy=Vy, & T=T, P=P, beta=0._pr, iters=iters & ) end select envelopes%alpha = [envelopes%alpha, alpha] envelopes%points = [envelopes%points, point] end subroutine save_point subroutine detect_critical(X, dXdS, ns, S, dS) !! # `detect_critical` !! Critical point detection !! !! # Description !! If the values of lnK (X[:nc]) change sign then a critical point !! Has passed, since for this to happen all variables should pass !! through zero. Near critical points (lnK < 0.05) points are harder !! to converge, so more steps in the extrapolation vector are made to !! jump over the critical point. !! If the critical point is detected then the kind of the point is !! changed and the point is saved using an interpolation knowing that !! !! \[ !! X_c = a * X + (1-a)*X_{new} !! \] !! !! With \(X_c\) is the variables at the critical point, \(X_{new}\) !! is the new initialization point of the method and \(a\) is the !! parameter to interpolate the values. This subroutine finds the !! value of \(a\) to obtain \(X_c\). real(pr), intent(in out) :: X(:) !! Vector of variables real(pr), intent(in out) :: dXdS(:) !! Variation of variables wrt S integer, intent(in out) :: ns !! Number of specified variable real(pr), intent(in out) :: S !! Specification value real(pr), intent(in out) :: dS !! Step in specification real(pr) :: Xc(nc+2) !! Value at (near) critical point real(pr) :: a !! Parameter for interpolation real(pr) :: Xold(size(X)) !! Old value of X real(pr) :: Xnew(size(X)) !! Value of the next initialization Xold = X do while (maxval(abs(X(:nc))) < 0.1_pr .and. abs(Vz - Vy) < 0.05_pr) ! If near a critical point, jump over it if (nc == 2) exit S = S + dS X = X + dXdS*dS end do Xnew = X + dXdS*dS if (all(Xold(:nc) * (Xnew(:nc)) < 0)) then select case(kind) case("dew") kind = "bubble" case("bubble") kind = "dew" case default kind = "liquid-liquid" end select ! 0 = a*X(ns) + (1-a)*Xnew(ns) Interpolation equation to get X(ns) = 0 a = -Xnew(ns)/(X(ns) - Xnew(ns)) Xc = a * X + (1-a)*Xnew envelopes%cps = [& envelopes%cps, & CriticalPoint(P=exp(Xc(nc+1)), alpha=Xc(nc+2)) & ] X = Xc + dXdS*dS end if end subroutine detect_critical end function px_envelope_2ph subroutine get_z(alpha, z_0, z_inj, z, dzda) !! Calculate the fluid composition based on an amount of addition !! of second fluid. !! !! The injection can be considered as two kinds of injection: !! - Displacement: \( z = \alpha z_i + (1-\alpha) z_0 \) !! - Addition: \( z = \frac{\alpha z_i + (1-\alpha) z_0}{\sum_{i=1}^N \alpha z_i + (1-\alpha) z_0} \) real(pr), intent(in) :: alpha !! Addition percentaje \( \alpha \) real(pr), intent(in) :: z_inj(:) real(pr), intent(in) :: z_0(:) real(pr), intent(out) :: z(size(z_0)) !! New composition real(pr), optional, intent(out) :: dzda(size(z_0)) !! Derivative wrt \(\alpha\) z = z_inj * alpha + (1.0_pr - alpha)*z_0 if (present(dzda)) dzda = z_inj - z_0 end subroutine get_z end module yaeos__equilibria_boundaries_phase_envelopes_px