module yaeos__models_ge_nrtlhv !! NRTL-HV model for excess Gibbs energy use yaeos__constants, only: pr, R use yaeos__autodiff use yaeos__models_ge, only: GeModel implicit none type, extends(GeModel) :: NRTLHV !! # NRTLHV !! Huron-Vidal modification of the NRTL model for excess Gibbs energy. !! !! # Description !! Huron-Vidal modified the NRTL model, including the covolume parameter !! into the model. This helps when running the model coupled with a cubic !! equation of state. Because it can be reduced to the classical !! quadratic mixing rules when some parameters are defined accordingly !! # Examples !! !! # References real(pr), allocatable :: b(:) !! Covolume parameter real(pr), allocatable :: alpha(:, :) !! \( \alpha \) matrix real(pr), allocatable :: gij(:, :) !! \( g_{ij} \) matrix contains procedure :: excess_gibbs => excess_gibbs end type NRTLHV contains subroutine excess_gibbs(self, n, T, Ge, GeT, GeT2, Gen, GeTn, Gen2) !! Calculate Excess Gibbs and its derivatives. use yaeos__models_ge_base, only: nrtl_hv_ge, nrtl_hv_tdep class(NRTLHV), intent(in) :: self !! Model real(pr), intent(in) ::n(:) !! Moles vector real(pr), intent(in) :: T !! Temperature [K] real(pr), optional, intent(out) :: Ge !! Excess Gibbs free energy real(pr), optional, intent(out) :: GeT !! \(\frac{dG^E}{dT}\) real(pr), optional, intent(out) :: GeT2 !! \(\frac{d^2G^E}{dT^2}\) real(pr), optional, intent(out) :: Gen(size(n)) !! \(\frac{dG^E}{dn}\) real(pr), optional, intent(out) :: GeTn(size(n)) real(pr), optional, intent(out) :: Gen2(size(n), size(n)) real(pr) :: tau(size(n), size(n)), dtaudt(size(n), size(n)), dtaudt2(size(n), size(n)) call nrtl_hv_tdep(T, self%gij, tau, dtaudt, dtaudt2) call nrtl_hv_ge(n=n, T=T,& b=self%b, alpha=self%alpha, & tau=tau, dtaudt=dtaudt, dtaudt2=dtaudt2, & Ge=Ge, Gen=Gen, GeT=GeT, GeT2=GeT2, GeTn=GeTn, Gen2=Gen2) end subroutine excess_gibbs ! subroutine C_from_cubic(self, n, T, C) ! class(NRTLHV), intent(in) :: self ! type(hyperdual), intent(in) :: n(:) ! type(hyperdual), intent(in) :: T ! type(hyperdual), intent(out) :: C ! real(pr) :: a(size(n)), dadt(size(n)), dadt2(size(n)) ! real(pr) :: aij(size(n), size(n)) ! real(pr) :: daijdt(size(n), size(n)) ! real(pr) :: daijdt2(size(n), size(n)) ! real(pr) :: Tr(size(n)) ! real(pr) :: d1, dd1i(size(n)), dd1ij(size(n), size(n)) ! real(pr) :: lambda, lambdadn(size(n)), dlambdadn2(size(n), size(n)) ! integer :: i, j, nc ! type(hyperdual) :: g_ii(size(n)), g_ji(size(n), size(n)) ! type(hyperdual) :: a_hd(size(n)), b_hd(size(n)) ! nc = size(n) ! Tr = T%f0/self%components%Tc ! ! ! ======================================================================== ! ! Attractive parameter and derivatives ! ! ! ------------------------------------------------------------------------ ! call self%cubic%mixrule%D1mix(n%f0, self%cubic%del1, d1, dd1i, dd1ij) ! call lamdba_hv(d1, dd1i, dd1ij, lambda, lambdadn, dlambdadn2) ! ! call self%cubic%alpha%alpha(Tr, a, dadt, dadt2) ! a = self%cubic%ac * a ! dadt = self%cubic%ac * dadt / self%cubic%components%Tc ! dadt2 = self%cubic%ac * dadt2 / self%cubic%components%Tc**2 ! g_ii = -a_hd/b_hd * lambda ! do i=1,nc ! do j=1,nc ! if (.not. self%use_cubic(i, j)) cycle ! g_ji(j, i) = -2*lambda * sqrt(a(i)*a(j)) * 1/(b(i)+b(j)) * ! (1-kij(i, j)) ! end do ! end do ! do i=1,nc ! do j=1,nc ! C(j, i) = (g_ji(j, i) - g_ji(i,i)) ! end do ! end do ! end subroutine C_from_cubic end module yaeos__models_ge_nrtlhv