module yaeos__math !! # Mathematical methods for `yaeos` !! !! # Description !! This module provides all the relevant mathematical functions used in this !! library. Most important ones are: !! !! - newton: Newton solving method !! - solve_system: Solving linear system Ax = b !! - continuation: Continuation method for line tracing !! !! # Examples !! !! ## Squared error calculation !! ```fortran !! use yaeos__math, only: sq_error !! real(pr) :: x = 2.5, y = 3.0, error !! print *, sq_error(2.5, 3.0) !! ------------------------------------ !! ``` !! !! ```fortran !! use yaeos__math, only: sq_error !! real(pr) :: x = [2.5, 5.0], y = [3.0, 4.5], error !! ! It also works with arrays !! print *, sq_error(x, y) !! ``` use yaeos__math_continuation, only: continuation use yaeos__math_linalg, only: solve_system, cubic_roots use yaeos__constants, only: pr implicit none abstract interface subroutine f_1d(x, f, df) import pr real(pr), intent(in) :: x real(pr), intent(out) :: f real(pr), intent(out) :: df end subroutine f_1d end interface interface newton module procedure :: newton_1d end interface newton contains elemental real(pr) function sq_error(exp, pred) !! # Squared error between two values. !! !! # Description !! ... !! !! # Examples !! !! ```fortran !! error = sq_error(true_value, model_value) !! ``` use yaeos__constants, only: pr real(pr), intent(in) :: exp real(pr), intent(in) :: pred sq_error = ((exp - pred)/exp)**2 end function sq_error function dx_to_dn(x, dx) result(dn) !! # dx_to_dn !! !! # Description !! Convert the mole fraction derivatives of a quantity (calculated !! so they do not sum to 1) to mole number derivatives (where the mole !! fractions do sum to one). Requires the derivatives and the mole fractions !! of the mixture. !! From [https://chemicals.readthedocs.io/chemicals.utils.html?highlight=dxs_to_dns#chemicals.utils.dxs_to_dns](Chemicals (Python)) use yaeos__constants, only: pr real(pr), intent(in) :: x(:) real(pr), intent(in) :: dx(:) real(pr) :: dn(size(x)) real(pr) :: sum_xdx dn = 0 sum_xdx = sum(x * dx) dn = dx - sum_xdx end function dx_to_dn function derivative_dxk_dni(n) result(dxk_dni) !! # derivative_dxk_dni !! !! # Description !! Calculate the mole fraction first derivatives respect to mole numbers !! real(pr), intent(in) :: n(:) real(pr) :: dxk_dni(size(n), size(n)) real(pr) :: n_tot integer :: nc, k, i n_tot = sum(n) nc = size(n) dxk_dni = 0.0_pr do concurrent(k=1:nc, i=1:nc) if (k == i) then dxk_dni(k,i) = (n_tot - n(i)) / n_tot**2 else dxk_dni(k,i) = -n(k) / n_tot**2 end if end do end function derivative_dxk_dni function derivative_d2xk_dnidnj(n) result(d2xk_dnidnj) !! # derivative_d2xk_dnidnj !! !! # Description !! Calculate the mole fraction second derivatives respect to mole numbers !! real(pr), intent(in) :: n(:) real(pr) :: d2xk_dnidnj(size(n), size(n), size(n)) real(pr) :: n_tot integer :: nc, k, i, j n_tot = sum(n) nc = size(n) d2xk_dnidnj = 0.0_pr do concurrent (k=1:nc, i=1:nc, j=1:nc) if (i==k .and. j==k) then d2xk_dnidnj(k,i,j) = -2 * (n_tot - n(i)) / n_tot**3 else if (i==k) then d2xk_dnidnj(k,i,j) = (2 * n(i) - n_tot) / n_tot**3 else if (j==k) then d2xk_dnidnj(k,i,j) = (2 * n(j) - n_tot) / n_tot**3 else d2xk_dnidnj(k,i,j) = 2 * n(k) / n_tot**3 end if end do end function derivative_d2xk_dnidnj ! subroutine eigen(A, values, vectors, stat) ! use stdlib_linalg, only: eigh, linalg_state_type ! real(pr), intent(in) :: A(:,:) ! real(pr), intent(out) :: values(:) ! real(pr), optional, intent(out) :: vectors(:,:) ! integer, intent(out) :: stat ! ! call eigh(A=A, lambda=values, vectors=vectors) ! end subroutine subroutine newton_1d(f, x, tol, max_iters) procedure(f_1d) :: f real(pr), intent(in out) :: x real(pr), intent(in) :: tol integer, intent(in) :: max_iters integer :: i real(pr) :: fval, df, step fval = 10 step = 10 do i=1, max_iters if (abs(fval) < tol .or. abs(step) < tol) exit call f(x, fval, df) step = fval/df do while (abs(step) > 0.5 * abs(x)) step = step/2 end do x = x - step end do end subroutine newton_1d elemental function interpol(x1, x2, y1, y2, x_obj) result(y) !! Linear interpolation. !! !! Calculates the linear interpolation between two points at a desired !! x value with the equation: !! \[ !! y = \frac{y_2 - y_1}{x_2 - x_1} \cdot (x_{obj}) - x_1 + y_1 !! \] !! !! Since this function is defined as `elemental` it will also interpolate !! a set of vectors. !! !! Examples of usage: !! !! ```fortran !! x1 = 2 !! x2 = 5 !! y1 = 2 !! y2 = 9 !! y = interpol(x1, x2, y1, y2, 2.3) !! ``` !! !! ```fortran !! x1 = 2 !! x2 = 5 !! y1 = [2, 6] !! y2 = [9, 15] !! y = interpol(x1, x2, y1, y2, 2.3) !! ``` real(pr), intent(in) :: x1 !! First point x value real(pr), intent(in) :: x2 !! Second point x value real(pr), intent(in) :: y1 !! First point y value real(pr), intent(in) :: y2 !! Second point y value real(pr), intent(in) :: x_obj !! Desired x value to interpolate real(pr) :: y !! y value at `x_obj` y = (y2 - y1)/(x2 - x1)*(x_obj - x1) + y1 end function interpol end module yaeos__math