Calculate the UNIFAC combinatorial term of Gibbs excess energy
Calculate the UNIFAC combinatorial term of reduced Gibbs excess energy. The subroutine uses the Flory-Huggins and Staverman-Guggenheim combinatory terms as follows:
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
class(UNIFAC) | :: | self | ||||
real(kind=pr), | intent(in) | :: | n(self%nmolecules) |
Moles vector [mol] |
||
real(kind=pr), | intent(in) | :: | T |
Temperature [K] |
||
real(kind=pr), | intent(out), | optional | :: | Ge |
Combinatorial Gibbs excess energy |
|
real(kind=pr), | intent(out), | optional | :: | dGe_dn(self%nmolecules) |
|
|
real(kind=pr), | intent(out), | optional | :: | dGe_dn2(self%nmolecules,self%nmolecules) |
|
Type | Visibility | Attributes | Name | Initial | |||
---|---|---|---|---|---|---|---|
real(kind=pr), | public | :: | Ge_fh | ||||
real(kind=pr), | public | :: | Ge_sg | ||||
real(kind=pr), | public | :: | dGe_fh_dn(self%nmolecules) | ||||
real(kind=pr), | public | :: | dGe_fh_dn2(self%nmolecules,self%nmolecules) | ||||
real(kind=pr), | public | :: | dGe_sg_dn(self%nmolecules) | ||||
real(kind=pr), | public | :: | dGe_sg_dn2(self%nmolecules,self%nmolecules) | ||||
integer, | public | :: | i | ||||
integer, | public | :: | j | ||||
real(kind=pr), | public | :: | n_t | ||||
real(kind=pr), | public | :: | nq | ||||
real(kind=pr), | public | :: | nr |