Abdulelah-Gani Result Class
Abdulelah-Gani fragmentation model result module [12].
- class AGaniFragmentationResult(molecule: Mol, primary_fragmentation: AGaniPSTFragmentationResult, secondary_fragmentation: AGaniPSTFragmentationResult, tertiary_fragmentation: AGaniPSTFragmentationResult, properties_contributions: DataFrame, properties_biases: DataFrame)[source]
Bases:
object
Abdulelah-Gani fragmentation model result [12].
Class to store the results of the Abdulelah-Gani fragmentation model.
- Parameters:
molecule (Chem.rdchem.Mol) – RDKit molecule object.
primary_fragmentation (AGaniPSTFragmentationResult) – Primary fragmentation model result.
secondary_fragmentation (AGaniPSTFragmentationResult) – Secondary fragmentation model result.
tertiary_fragmentation (AGaniPSTFragmentationResult) – Tertiary fragmentation model result.
properties_contributions (pd.DataFrame) – Contribution parameters of each group for each property of the model.
properties_biases (pd.DataFrame) – Biases parameters of each property of the model.
- molecule
RDKit molecule object.
- Type:
Chem.rdchem.Mol
- primary
Primary fragmentation model result.
- secondary
Secondary fragmentation model result.
- tertiary
Tertiary fragmentation model result.
- ml_vector
Vector of groups occurrences to evaluate ML model.
- Type:
np.ndarray
- molecular_weight
Molecular weight [g/mol].
- Type:
pint.Quantity
- critical_temperature
Critical temperature [K] GC-Simple method.
- Type:
pint.Quantity
- critical_pressure
Critical pressure [bar] GC-Simple method.
- Type:
pint.Quantity
- critical_volume
Critical volume [cm³/mol] GC-Simple method.
- Type:
pint.Quantity
- acentric_factor
Acentric factor [-] GC-Simple method.
- Type:
pint.Quantity
- liquid_molar_volume
Liquid molar volume [L/mol] GC-Simple method.
- Type:
pint.Quantity
- ig_formation_enthalpy
Ideal gas formation enthalpy [kJ/mol] GC-Simple method.
- Type:
pint.Quantity
- ig_formation_gibbs
Ideal gas formation Gibbs [kJ/mol] GC-Simple method.
- Type:
pint.Quantity
- properties_calculation(properties_contributions: DataFrame, properties_biases: DataFrame) None [source]
Calculate the properties with the fragmentation results.
Properties are calculated with the GC-Simple method.
- Parameters:
properties_contributions (pd.DataFrame) – Contribution parameters of each group for each property of the model.
properties_biases (pd.DataFrame) – Biases parameters of each property of the model.